ON THE EXPLOSION OF LINEARLY DISTRIBUTED CHARGE
WITH CURVILINEAR SHAPE ON THE GROUND SURFACE

I.. M, Kotlyar UDC 532.5

We use the momentum version proposed by M. A. Lavrent'yev [1, 2] to treat the two-dimen~
sional problem of the explosion of a linearly distributed charge of curvilinear shape on the
ground surface. The problem of the explosion of a straight charge was solved for the first
time in [2] in this version. The ground is assumed to be an ideal incompressible liquid at
velocities exceeding some critical veloeity which remains constant along the crater; be-
yond this boundary, the medium is fixed. The potential of the velocity is assumed to be con-
stant on the charge and vanishing on the ground surface.

1. Let us consider the two-dimensional stationary potential flow of an ideal weightless liquid in a
portion of the plane z =x +iy; the flow is limited by the curvilinear section D'AD, the straight boundaries
D'C' and DC on which the potential of the velocity is constant, and the flow line C' BC on which the absolute
value of the veloeity is constant and equal to V. The x axis runs vertically downward and is the symmetry
axis of the flow; the y axis is parallel to the horizontal surface (Fig, 1a).

In view of the symmetry, we will consider only the right half of the flow pattern.

In order to solve the problem, we use the auxiliary complex variable u=£ +i-+7n which varies in a
region G (rectangle with the sides #/4 and 7 -7/4;(7=1|7] ); we will determine the function z(u) which pro-
vides for the conformal mapping of the region G upon the flow region; we will obtain the correspondence of
the points as shown in Fig. 1b.

According to [2], we introduce the boundary eonditions for the complex potential W) =¢ +iy:
ReW:mzq;o,u:.%.Fin, (1.1)
R?W:(p = 0! u:g,
ImW = = const, y =in, u=%§ +'_‘_4"_

It follows from Eq. (1.1) that the function dW/du is purely imaginary on BCD and purely real on BAD, This
means that the funetion can be continued over the entire plane in accordance with the symmetry principle.
In the region G(dW/du) has a first-order zero at the point B and a first-order pole at the point D (vortex).
We obtain from the theory of elliptic functions [3]

7Ty , T T nt
. aw_ .‘t"("“z—)ﬁ‘(uT 4>ﬁ’(u_ 4)62\(”+‘4‘) (1.2)
——L‘xF(u):-—d—uz——u’\ = = — “/, .
ﬁl(“—i)ﬁx("ﬁL'Z) ﬁ4(u—z) ﬁ4(u+1;)

where N denotes a real positive constant, and Jy (1) denotes the theta functions for the periods # and »r [3].

After determining from Egs. (1.2) W) at the point D, we express the constant N through ¢,

A— = SE;:'(— 1\’1, I\I = 2 3 a 32203ﬁ4 b1 4 nr 2' (1.3)
| (P ey ]

where Sk =9 (0).
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i y b Let us consider the Zhukovskii function X)=1n(1/V)(@W/dz) =
-4

¢ ‘ IJA‘W ., |8 4 In[ (V/V,)—i®] =r—i@®, where V denotes the absolute value of the ve-
y, 7. . locity, and @ denotes the angle by which the velocity vector is in-
@ /4] clined relative to the x axis.

\/BI\/ IZ’ On the straight boundary sections, the function X @) must satisfy
x c A the following conditions:
ImX@)=—08=—n, u=% ImX@=—0=0,u=§+3. (14
On the free boundary V=V, and
ReX(u)=r=0, u=iy. (1.5}

Assume that the angle B(s) enclosed by the tangent with the abscissa axis is given on the curvilinear
arc AD, where s denotes the length of the arc reckoned from the point A and referred to the total length I
of the arc AD. The dimensionless curvature of the arc is »(8) =dp/ds and, since =@ +7/2, we have

% (8) = 379. (1.6)
We obtain with Eqs. (1.2), (1.8), and (1.6) the boundary condition for X () at u= (r/4) +in

® _sM T in)e-r 1.7
d—ﬂ--ﬁﬂu(@)'F(4+Ln>e W, .7

where 6=¢,/Vyl denotes a dimensionless parameter,
We try to determine the function X(u) in the form
X(uy=X 4(w) — f(u)s (1.8)

where fu) =u+ i€ is a function analytic on G and continuous in é; X @) =1, —i®, satisfies the following
boundary conditions:

ImX*(u):-j——G*z-—n, u=E, ) (1.9)

InX, @)= — 0, = — n(i— —;’—),uzg + 5, u=+in,

ReX, (w)=ry =0, u=in, .

where #[1— (y/2)] denotes the angle enclosed by the tangent to the line AD at the point D with the y axis
(Fig. 1a).
It follows from Eq. (1.9) that the function X, (u) is the Zhukovskii function for the two-dimensional

flow of an ideal weightless liquid according to the scheme of Fig. 1c; this scheme is obtained by replacing
the arc AD by a straight section and by rotating the flow line AB by the angle 7 {1~ (v/2)].

The derivative of the function X, (1) is purely real on CD and BA and purely imaginarjr on BC and
AD. By representing the derivative as a linear combination of logarithmic derivatives of the theta func-

tions [3] and by integrating, we obtain
o (w+ ) out+ )

7
0 (u - m(u__z_)" (1.10)

Comparing the boundary conditions (1.4), (1.5), and (1.7) for X(u) with Eq. (1.9) for X, W), we obtain the
boundary conditions for the unknown function f():

Xe@)=in(y—1) + yln

o' =0 x(@)v()er, uw—F 4, 1.11)
Bef(u)=ul=0, u=in,

Imf(uy=e=0, u=E, (1.12)
Imf(u)=a=—-:n:(1—-—;-)’ b=t

where v(n)= |F[(x/4) +in]|exp(—r, 0)).

The Woods formula [4] can be used to introduce an operator defining on AD the real part of a function
which is analytic on G; this operator is given by the derivative of the imaginary part on AB and satisfies
the boundary conditions (1.11). It is possible to show that the boundary-value problem (1.11), {1.12) can
be uniquely solved for sufficiently small values of the angle of the arc.
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2. We map the region G upon the half-ring p <| £|=1 with the aid of the function

.i
Tl

C—exp\ m“), p=rel 2.1)
and consider the function A
PO =1 (@) + (1~ ). (2.2)
According to Eq. (1.9), this function must satisfy the bou.ndary conditions
Imp(£)=0, Im¢=0. 2.3)

This means that P(¢) can be continued over the entire ring acecording to the symmetry principle and
can be represented as a Laurent series on the ring:

pO= 3 eln (2.4)

nw=—co

where c,, denotes real coefficients.

We obtain with Eqs. (2.1) and (2.2) from Eq. (2.4)

(hu —n) {1 — hu-m
f(u):————%—)nu S e T (2.5)

n==—o00

We obtain from the first boundary condition (1.8):

0 Jtn [in 4 (1_ %-)
Re f (W)u=in = ¢, + E ( e e '”)cos% -————l——=0, (2.6)
n=1
.
Co=— T::T(l_%) Con=— o, p=e .

By substituting the expressions for the real and imaginary parts of f(u) from Eq. (2.5) into Eq. (1.12}, we
obtain with Eq. (2.6)

v
o {—— a hd
2 T .
X enll—p2) roos g 4—'—( i Lﬁ%e L @om. @.7)
n={
02( J'”l— ) (LZ‘—“ Tl~~)1 ) 4

— - 1~ g2n an .

Q= 10 0) 0, GO P 10, (00 G017 © L}:“lc A= pmeosy n]

Integrating Eq. (2.7) over 7 from 0 tow |7]/4, we obtain a condition which the coefficients ¢, must satisfy:

—a{t— )= 5%[%(1'%) I, (2.8)

Eadh!
I,= os %(8) Q (n) dn.

By multiplying Eq. (2.8) with cos (4n/[7])n and integrating this equation within the above limits, we obtain

v bl
2(1-%) 4, ¢ in (2.9)
o= — o T In= g %(6) Q (m) cos - ndn.
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Equation (2.9) is used to determine by iteration the coefficients ¢ at given jr| and ¥y.

After determining the function f(u), all geometrical and hydrodynamic characteristics of the flow can
be easily determined from Eqs. (1.2), (1.8), and (1.10).

3. We determined as an example the form of the crater resulting from the explosion of a charge
with circular shape. In this case for 6= (g/Vy)R (with R denoting the radius of the arc AB), we have ®(®)=
1. The parameter 0 is obtained from Egs. (1.3) and (2,8)

\

(=2
5= a, <a= w(1-F)o ) 2)) (3.1)

ol

The coordinates of the boundary BC are obtained from Egs. (1.2), (1.8), and (1.10):

N nt ., T . T /. 7
nid, (m -—‘4‘)'01(”\ — Z)ﬂz(”l _—4-)@2(11] -+ ZE)'

}:a[x'y, Ix,yzj‘ I \ (n V. 2 X
0 ﬁl(T“iﬁl“}"&q 7‘1‘”])

\*i

z/R
{y/R

a

% Ic?s} —4q(1 ) + 22 Cap™ Sin ———7| 2yarg 8, (“]-l- )—2vargﬁ4(in +i> dn.
|sin n=1 fl -

The shapes of the ejection craters are shown in Fig. 2 (y =5/3) and Fig. 3 (y=4/3). Curves 1-6 correspond
to the 6=5.05; 2.52; 1.93; 10.81; 5.28; 3.96, respectively.
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