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We use the momentum vers ion  proposed by M. A. Lavren t 'yev  [1, 2] to t rea t  the two-dimen-  
sional problem of the explosion of a l inear ly  distributed charge of curv i l inear  shape on the 
ground surface.  The problem of the explosion of a straight charge was solved for  the f i rs t  
t ime in [2] in this vers ion.  The ground is assumed to be an ideal incompressible  liquid at 
velocit ies exceeding some cr i t ical  velocity which remains  constant along the c ra te r ;  be-  
yond this boundary, the medium is fixed. The potential of the velocity is assumed to be con-  
stant on the charge and vanishing on the ground surface.  

1. Let us consider  the two-dimensional  s tat ionary potential flow of an ideal weightless liquid in a 
port ion of the plane z =x +iy; the flow is l imited by the eurvi l inear  sect ion D'AD, the straight  boundaries 
D' C'  and DC on which the potential of the velocity is constant, and the flow line C' BC on which the absolute 
value of the velocity is constant and equal to V 0. The x axis runs vert ical ly downward and is the symmet ry  
axis of the flow; the y axis is paral le l  to the horizontal surface (Fig. la). 

In view of the symmetry ,  we will consider  only the right half of the flow pat tern.  

In o rde r  to solve the problem, we use the auxiliary complex variable u=~ +i .r/ which var ies  in a 
region G (rectangle with the sides r / 4  and r "  ~-/4; (r  =i [r[ ); we wiU determine the function z (u) which p ro -  
vides for the conformal  mapping of the region G upon the flow region; we will obtain the correspondence of 
the points as shown in Fig. lb. 

Aecording to [2], we introduce the boundary conditions for  the complex potential W(u) = ~ +ir 

ReW = (p = %, u =  -~- + i~l, (1.1) 

R e W =  ~0 = 0; u = [ ,  

I m W  = ~ = eonst, u = i~l. u = ~ + "-T'" 

It follows f rom Eq. (1.1) that the function dW/du is purely imaginary on BCD and purely real  on BAD. This 
means that the function can be continued over  the entire plane in accordance with the symmet ry  principle.  
In the region G(dW/du) has a f i r s t - o r d e r  zero  at the point B and a f i r s t - o r d e r  pole at the point D (vortex), 
We obtain f rom the theory of elliptic functions [3] 

-- ~-) ~)l[u § ~ )  ~,(u-- q-) 0,(u § -- (1.2) 
- -  i 3 F  (u) . . . .  iN 

du o.(o 
where N denotes a real  positive constant, and ~k(U) denotes the theta functions for  the periods r and lr~- [3]. 

After determining f rom Eqs. (1.2) W(u) at the point D, we express  the constant N through r 

where ~k =$k(0) �9 
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a i ~  ~r 1,, b 

Fig. 1 

Let  us cons ider  the Zhukovskii function X(u)=ln(1/V)(dW/dz)= 
ln[(V/V0)-i |  ] = r - i |  where  V denotes the absolute value of the ve-  
locity,  and | denotes the angle by which the veloci ty vec to r  is in- 
clined re la t ive  to the x axis .  

On the s t ra ight  boundary sect ions,  the function X(u) must  sat isfy 
the following conditions: 

aT I m X ( u ) = - - , O = - - ~ ,  u = ~ ,  I m X ( u ) = - - @ = O ,  u = ~ + - 2 - . .  (1.4) 

On the f ree  boundary V =V 0 and 

ReX(uy=r~O, u=i~l. (1.5) 

Assume  that  the angle fi(s) enclosed by the tangent with the a b s c i s s a  axis is given on the cu rv i l inea r  
a rc  AD, where  s denotes the length of the a rc  reckoned f r o m  the point A and r e f e r r e d  to the total length l 
of the a rc  AD. The d imens ion less  cu rva tu re  of the a rc  is ~(f l)=dfl /ds and, s ince fl=| +~r/2, we have 

dO (1.6) 
• (0)  = 7 "  

We obtain with l~qs. (1.2), (1.3), and (1.6) the boundary condition for  X(u) at u = (r/4) + iT 

dO ~ M (0) F(-~- -4-il])[e-r(~1), (1.7) 
d - ~ =  ~ 

where 6 = ~00/V0l denotes a d imens ion less  p a r a m e t e r .  

We t ry  to de te rmine  the function X(u) in the f o r m  

X(u)=X,(u) -/(u), ~1.8) 

where f ( u ) = # +  ie is a function analyt ic  on G and continuous in G; X ,  ( u ) = r , - i O ,  sa t i s f i es  the following 
boundary condit ions;  

Im X,  (u) = - -  O, = - -  n, u = ~ ,  (1.9) 

I m X . ( u ) s  t - - ~  u = ~ + ~ - ,  u = - - U + * ~ t ,  

R e X , ( u ) = r . = O ,  u=i~l ,  

where  ~ [ 1 - ( y / 2 ) ]  denotes the angle enclosed by the tangent to the line AD at the point D with the y axis 
(Fig. la) .  

It follows f r o m  Eq. (1.9) that  the function X ,  (u) is the Zhukovskii function for  the two-dimensional  
flow of an ideal weight less  liquid according to the scheme of Fig. lc;  this  scheme is obtained by replacing 
the a rc  AD by a s t ra igh t  sec t ion  and by rotat ing the flow line AB by the angle ~ [ 1 -  @/2)].  

The der iva t ive  of the function X .  {u) is pure ly  rea l  on CD and BA and pure ly  imag ina ry  on BC and 
AD. By represen t ing  the der iva t ive  as a l inea r  combinat ion of logar i thmic  der iva t ives  of the theta  func- 
t ions [3] and by integrat ing,  we obtain 

X,(u) = i~ (y.--1) + ~,ln 

Compar ing  the boundary conditions (1.4), (1.5), and (1.7) for  X(u) with Eq. (1.9) for  X ,  (u), we obtain the 
boundary conditions fo r  the unknown function f(u): 

e~ i -ff-• u = -~ -  + i~l, (1.11) 

R e f ( u ) = ~ t : = 0 ,  u = i n ,  

I m / ( u ) = e = 0 ,  u-----~, (1.12) 

I m / ( u ) = e = - - ~  - - ~  , u = - u  + ~ 

where  v0? )= I F[0t/4) + i~] l e x p ( - - r ,  (~7)). 

The Woods fo rm u l a  [4] can be used to introduce an ope ra to r  defining on AD the rea l  pa r t  of a function 
which is analyt ic  on G; this ope ra t o r  is g iven by the der iva t ive  of the imaginary  pa r t  on AB and sa t i s f ies  
the boundary conditions (1.11). It is  poss ib le  to show that the boundary-va lue  p rob lem (1.11), (1.12) can 
be uniquely solved fo r  sufficiently smal l  va lues  of the angle of the a rc .  
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Fig. 2 
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Fig. 3 

2. We m a p t h e  region G upon the half-r ing p ---I ~l -< 1 with the aid of the function 

= exp I ( - ~ F -  ), p = e l,i 

and cons ider  the function 

(2.1) 

p(~)---](u(~)) .4-In : ~ ( t -  + ) .  (2.2) 

According to Eq. (1.9), this function must sat isfy the boundary conditions 

Imp(~)=0, Imp=0.  (2,3) 

This means  that P(~) can be continued over  the ent i re  ring according to the symmet ry  principle  and 
can be represen ted  as a Laurent  se r ies  on the ring: 

p (~) = ~ cn~, (2.4) 

where c n denotes real  coefficients .  

We obtain with Eqs.  (2.1) and (2.2) f rom Eq. (2.4) 

l(u) = - -  I~l + c,~e m 'n (2.5) 
n ~ - -  oo 

We obtain f rom the f i r s t  boundary condition (1.8): 

Re / (u)~=in = co + "~ cne I~l + c,,e~ cos + .  iT I =0,  (2.6) 

c 0 = - -  1 - - ~ ,  c_,=--c~p~-~, p = e  

By substituting the express ions  for  the real  and imaginary par t s  of f(u)' f rom Eq. (2.5) into Eq. (1.12), we 
obtain with Eq. (2.6) 

( t  -- _L)2 
c. (t o .  ~'n 4~ ~ _ ~  (2.7) -p- ,~  ~co~]~ ,~  - 4  - ~ T j ~ ' O  - [ )  ~ (O)Q (~), 

exp '~ r  p2n) COS ~ ' q  �9 
Q (TI) = 19=(i,]) o, (in)l '+v 1~, (/,l) o4(iq)[ l-v Ln=l 

Integrating Eq. (2.7) over  ,7 f rom 0 tolr [~-1/4, we obtain a condition which the coefficients e n must satisfy: 

(2.8) 

m~__i 
4 

0 

By multiplying Eq. (2.8) with cos (4n/[rl)7/ and integrating this equation within the above l imits ,  we obtain 

2 t -  In (2.9) 
c~= n (l+p2~)" I'-'~-' I n =  o j" n(O) O('q)c~ 
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Equation (2.9) is used to de te rmine  by i te ra t ion  the coefficients  c n at given IT l and 7.  

After  determining the function f(u), all geomet r ica l  and hydrodynamic cha rac t e r i s t i c s  of the flow can 
be easi ly  determined f rom Eqs'. (1.2), (1.8), and (1.10). 

3. We de termined  as an example the fo rm  of the c r a t e r  result ing f rom the explosion of a charge 
with c i r c u i a r  shape. In this case  for  6= (~0/V0)R (with R denoting the radius of the arc  AB), we have ~(|  
1. The p a r a m e t e r  6 is obtained f rom Eqs.  (1.3) and (2.8) 

n t - -  p- (1-~- (3.1) 
8 

= ] 7 - - a ,  a = ~ i  /"  

The coordinates  of the boundary BC are  obtained f rom Eqs.  (1.2), (1.8), and (1.10): 

l x l R  t = 
y/BJ aIx,~, • 

/c~ ~] 2 ~  sin --2yarg61 i~ t +  2 y a r g 6 ~ ( i G + 4  dG" >< ~_:n ~ - 4 n  i - + c . p n  ~ ~ _ 

The shapes of the eject ion c r a t e r s  are  shown in Fig. 2 (y =5/3)  and Fig. 3 (y=4/3) .  Curves 1-6 cor respond 
to the 6= 5.05; 2.52; 1.93; 10.81; 5.28; 3.96, respec t ive ly .  
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